首页> 外文OA文献 >Image Denoising Using Tensor Product Complex Tight Framelets with Increasing Directionality
【2h】

Image Denoising Using Tensor Product Complex Tight Framelets with Increasing Directionality

机译:使用Tensor积复杂紧框架进行图像去噪   增加方向性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tensor product real-valued wavelets have been employed in many applicationssuch as image processing with impressive performance. Though edge singularitiesare ubiquitous and play a fundamental role in two-dimensional problems, tensorproduct real-valued wavelets are known to be only sub-optimal since they canonly capture edges well along the coordinate axis directions. The dual treecomplex wavelet transform (DTCWT), proposed by Kingsbury [16] and furtherdeveloped by Selesnick et al. [24], is one of the most popular and successfulenhancements of the classical tensor product real-valued wavelets. Thetwo-dimensional DTCWT is obtained via tensor product and offers improveddirectionality with 6 directions. In this paper we shall further enhance theperformance of DTCWT for the problem of image denoising. Using framelet-basedapproach and the notion of discrete affine systems, we shall propose a familyof tensor product complex tight framelets TPCTF_n for all integers n>2 withincreasing directionality, where n refers to the number of filters in theunderlying one-dimensional complex tight framelet filter bank. For dimensiontwo, such tensor product complex tight framelet TPCTF_n offers (n-1)(n-3)/2+4directions when n is odd, and (n-4)(n+2)/2+6 directions when n is even. Inparticular, TPCTF_4, which is different to DTCWT in both nature and design,provides an alternative to DTCWT. Indeed, TPCTF_4 behaves quite similar toDTCWT by offering 6 directions in dimension two, employing the tensor productstructure, and enjoying slightly less redundancy than DTCWT. When TPCTF_4 isapplied to image denoising, its performance is comparable to DTCWT. Moreover,better results on image denoising can be obtained by using TPCTF_6. Moreover,TPCTF_n allows us to further improve DTCWT by using TPCTF_n as the first stagefilter bank in DTCWT.
机译:Tensor产品实值小波已被用于许多应用中,例如具有出色性能的图像处理。尽管边缘奇异性无处不在,并且在二维问题中起着基本作用,但张量积实值小波已知仅次优,因为它们只能沿坐标轴方向很好地捕获边缘。由Kingsbury [16]提出并由Selesnick等人进一步发展的对偶树复小波变换(DTCWT)。 [24]是经典张量积实值小波最流行和最成功的增强之一。二维DTCWT是通过张量积获得的,并在6个方向上提供了改进的方向性。在本文中,我们将进一步提高DTCWT在图像去噪问题上的性能。使用基于框架的方法和离散仿射系统的概念,我们将针对在递增方向性内的所有整数n> 2提出一个张量积复杂紧框架小框架TPCTF_n,其中n表示底层一维复杂紧框架滤波器组中的滤波器数量。对于第二维,张量积复杂紧框架TPCTF_n在n为奇数时提供(n-1)(n-3)/ 2 + 4个方向,在n为偶数时提供(n-4)(n + 2)/ 2 + 6个方向。特别是,TPCTF_4在本质和设计上都与DTCWT不同,它提供了DTCWT的替代方法。确实,TPCTF_4的行为与DTCWT非常相似,它在维度2中提供了6个方向,采用了张量积结构,并且比DTCWT的冗余度略低。当TPCTF_4应用于图像去噪时,其性能可与DTCWT媲美。此外,通过使用TPCTF_6可以获得更好的图像去噪结果。此外,TPCTF_n允许我们通过将TPCTF_n用作DTCWT中的第一级滤波器组来进一步改进DTCWT。

著录项

  • 作者

    Han, Bin; Zhao, Zhenpeng;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号